IRF6 is the mediator of TGFβ3 during regulation of the epithelial mesenchymal transition and palatal fusion

نویسندگان

  • Chen-Yeh Ke
  • Wen-Lin Xiao
  • Chun-Ming Chen
  • Lun-Jou Lo
  • Fen-Hwa Wong
چکیده

Mutation in interferon regulatory factor 6 (IRF6) is known to cause syndromic and non-syndromic cleft lip/palate in human. In this study, we investigated the molecular mechanisms related to IRF6 during palatal fusion using palatal shelves organ culture. The results showed that ablation of Irf6 resulted in a delay in TGFβ3-regulated palatal fusion. Ectopic expression of IRF6 was able to promote palatal fusion and rescue shTgfβ3-induced fusion defect. These findings indicate that IRF6 is involved in TGFβ3-mediated palatal fusion. Molecular analysis revealed that ectopic expression of IRF6 increased the expression of SNAI2, an epithelial mesenchymal transition (EMT) regulator, and diminished the expression of various epithelial markers, such as E-cadherin, Plakophilin and ZO-1. In addition, knockdown of Irf6 expression decreased SNAI2 expression, and restored the expression of ZO-1 and Plakophilin that were diminished by TGFβ3. Blocking of Snai2 expression delayed palatal fusion and abolished the IRF6 rescuing effect associated with shTgfβ3-induced fusion defect. These findings indicate that TGFβ3 increases IRF6 expression and subsequently regulates SNAI2 expression, and IRF6 appears to regulate EMT during palatal fusion via SNAI2. Taken together, this study demonstrates that IRF6 is a mediator of TGFβ3, which regulates EMT and fusion process during the embryonic palate development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of IRF6 and Jagged2 signalling is essential for controlling palatal adhesion and fusion competence

In mammals, adhesion and fusion of the palatal shelves are essential mechanisms during the development of the secondary palate; failure of these processes leads to the congenital anomaly, cleft palate. The mechanisms that prevent pathological adhesion between the oral and palatal epithelia while permitting adhesion and subsequent fusion of the palatal shelves via their medial edge epithelia rem...

متن کامل

Smad4-Irf6 genetic interaction and TGFβ-mediated IRF6 signaling cascade are crucial for palatal fusion in mice.

Cleft palate is one of the most common human birth defects and is associated with multiple genetic and environmental risk factors. Although mutations in the genes encoding transforming growth factor beta (TGFβ) signaling molecules and interferon regulatory factor 6 (Irf6) have been identified as genetic risk factors for cleft palate, little is known about the relationship between TGFβ signaling...

متن کامل

Analysis of Snail1 function and regulation by Twist1 in palatal fusion

Palatal fusion is a tightly controlled process which comprises multiple cellular events, including cell movement and differentiation. Midline epithelial seam (MES) degradation is essential to palatal fusion. In this study, we analyzed the function of Snail1 during the degradation of the MES. We also analyzed the mechanism regulating the expression of the Snail1 gene in palatal shelves. Palatal ...

متن کامل

Microtubule disassembly prevents palatal fusion and alters regulation of the E-cadherin/catenin complex.

During palatal fusion, the midline epithelial seam (MES) degrades to achieve mesenchymal confluence. Epithelial mesenchymal transition (EMT) is one mechanism which is active in MES degradation. TGF-β induces EMT in medial edge epithelium (MEE) by down-regulation of an epithelial marker, E-cadherin. Microtubule disassembly impaired palatal fusion leading to a multi-layered MES in the mid-region....

متن کامل

TGFβ3 signaling activates transcription of the LEF1 gene to induce epithelial mesenchymal transformation during mouse palate development

Epithelial mesenchymal transformation (EMT) of the medial edge epithelial (MEE) seam creates palatal confluence. This work aims to elucidate the molecular mechanisms by which TGFbeta3 brings about palatal seam EMT. We collected mRNA for PCR analysis from individual transforming MEE cells by laser microdissection techniques and demonstrated that TGFbeta3 stimulates lymphoid-enhancing factor 1 (L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015